O que é Propriedade Modulativa? (50 exemplos)



O propriedade moduladora é o que permite operações com números sem alterar o resultado da igualdade. Isso é particularmente útil posteriormente na álgebra, já que multiplicar ou somar por fatores que não alteram o resultado, permite a simplificação de algumas equações.

Para adição e subtração, adicionar zero não altera o resultado. No caso de multiplicação e divisão, multiplicar ou dividir por um também não altera o resultado.

Os fatores zero para a soma e um para a multiplicação são modulares para essas operações. As operações aritméticas possuem várias propriedades além da propriedade modulativa, que contribuem para a solução de problemas matemáticos.

Operações aritméticas e propriedade modulativa

As operações aritméticas são adição, multiplicação e divisão de subtração. Vamos trabalhar com o conjunto de números naturais.

Soma

A propriedade chamada elemento neutro nos permite adicionar um addend sem alterar o resultado. Isso nos diz que zero é o elemento neutro da soma.

Como tal, diz-se que é o módulo da soma e, portanto, o nome da propriedade moduladora.

Por exemplo:

(3+5)+9+4+0 = 21

4+5+9+3+0 = 21

2+3+0 = 5

1000+8+0 = 1008

500+0= 500

233+1+0= 234

25000+0= 25000

1623+2+0= 1625

400+0= 400

869+3+1+0= 873

78+0= 78

542+0= 542

36750+0 = 36750

789+0 = 789

560+3+0= 563

1500000+0= 1500000

7500+0= 7500

658+0= 658

345+0= 345

13562000+0= 13562000

500000+0= 500000

322+0= 322

14600+0= 14600

900000+0= 900000

A propriedade modulativa também é preenchida para números inteiros:

(-3)+4+ (-5)= (-3)+4+ (-5)+0

(-33)+(-1) = (-33)+(-1)+0

-1+35 = -1+35+0

260000+(-12) = 260000+(-12)+0

(-500)+32+(-1) = (-500)+32+(-1)+0

1750000+(-250)= 1750000+(-250)+0

350000+(-580)+(-2) = 350000+(-580)+(-2)+0

(-78)+(-56809) = (-78) +(-56809)+0

8+5+(-58) = 8+5+(-58)+0

689+854+(-78900) = 689+854+(-78900)+0

1+2+(-6)+7= 1+2+(-6)+7+0

E, da mesma forma, para números racionais:

2/5+3/4 = 2/5+3/4+0

5/8+4/7= 5/8+4/7+0

½+1/4+2/5= ½+1/4+2/5+0

1/3+1/2 = 1/3+1/2+0

7/8+1=7/8+1+0

3/8+5/8=3/8+5/8+0

7/9+2/5+1/2= 7/9+2/5+1/2+0

3/7+12/133=3/7+12/133+0

6/8+2+3=6/8+2+3+0

233/135+85/9=233/135+85/9+0

9/8+1/3+7/2=9/8+1/3+9/8+0

1236/122+45/89=1236/122+45/89+0

24362/745+12000=24635/745+12000+0

Também para os irracionais:

e + √2 = e + √2 + 0

√78+1=√78+1+0

√9+√7+√3=√9+√7+√3+0

√7120 + e = √7120 + e + 0

√6+√200=√6+√200+0

√56+1/4=√56+1/4+0

√8+√35+√7= √8+√35+√7+0

√742+√3+800= √742+ √3+800+0

V18 / 4 + √7 / 6 = √18 / 4 + √7 / 6 + 0

√3200+√3+√8+√35 = √3200+√3+√8+√35+0

√12 + e + √5 = √12 + e + √5 + 0

/30 / 12 + e / 2 = √30 / 12 + e / 2

√2500+√365000 = √2500+√365000+0

180 + 13 + e + 79 = = 170 + 13 + e + 79 + 0

E igualmente para todos os reais.

2,15+3=2,15+3+0

144,12+19+√3 = 144,12+19+√3+0

788500+13,52+18,70+1/4 = 788500+13,52+18,70+1/4+0

3,14+200+1 = 3,14+200+1+0

2,4+1,2+300 = 2,4+1,2+300+0

√35+1/4 = √35+1/4+0

e + 1 = e + 1 + 0

7,32+12+1/2 = 7,32+12+1/2+0

200+500+25,12 = 200+500+25,12+0

1000000+540,32+1/3 = 1000000+540,32+1/3 +0

400+325,48+1,5 = 400+325+1,5+0

1200+3,5 = 1200+3,5+0

Subtração

Aplicando a propriedade modulativa, como além disso, o zero não altera o resultado da subtração:

4-3= 4-3-0

8-0-5= 8-5-0

800-1 = 800-1-0

1500-250-9 = 1500-250-9-0

É preenchido por inteiros:

-4-7=-4-7-0

78-1 = 78-1-0

4500000-650000 = 4500000-650000-0

-45-60-6=-45-60-6-0

-760-500 = -760-500-0

4750-877 = 4750-877-0

-356-200-4 = 356-200-4-0

45-40 = 45-40-0

58-879 = 58-879-0

360-60 =360-60-0

1250000-1 = 1250000-1-0

3-2-98 = 3-2-98-0

10000-1000 = 10000-1000-0

745-232 = 745-232-0

3800-850-47 = 3800-850-47-0

Para os racionais:

3/4-2/4 = 3/4-2/4-0

120/89-1/2 = 120/89-1/2-0

1/32-1/7-1/2 = 1/32-1/7-1/2-0

20/87-5/8 = 20/87-5/8-0

132/36-1/4-1/8 = 132/36-1/4-1/8

2/3-5/8 = 2/3-5/8-0

1/56-1/7-1/3 = 1/56-1/7-1/3-0

25/8-45/89 = 25/8-45/89 -0

3/4-5/8-6/74 = 3/4-5/8-6/74-0

5/8-1/8-2/3 = 5/8-1/8-2/3-0

1/120-1/200 = 1/120-1/200-0

1/5000-9/600-1/2 = 1/5000-9/600-1/2-0

3/7-3/4 = 3/7-3/4-0

Também para os irracionais:

Π-1= Π-1-0

e-√2 = e-√2-0

√3-1=√-1-0

√250-√9-√3=√250-√9-√3-0

√85-√32 = √85-√32-0

√5-√92-√2500=√5-√92-√2500

√180-12=√180-12-0

√2-√3-√5-√120= √2-√3-√5-120

15-√7-√32= 15-√7-√32-0

V2 / √5-√2-1 = √2 / √5-√2-1-0

√18-3-√8-√52 = √18-3-√8-√52-0

√7-√12-√5 = √7-√12-√5-0

√5-e / 2 = √5-e / 2-0

√15-1 = √15-1-0

√2-√14-e = √2-√14-e-0

E, em geral, para os reais:

π -e = π-e-0

-12-1,5 = -12-1,5-0

100000-1/3-14,50 = 100000-1/3-14,50-0

300-25-1,3 = 300-25-1,3-0

4,5-2 = 4,5-2-0

-145-20 = -145-20-0

3,16-10-12 = 3,16-10-12-0

π-3 = π-3-0

π/2- π/4 = π/2- π/4-0

325,19-80 = 329,19-80-0

-54,32-10-78 = -54,32-10-78-0

-10000-120 = -10000-120-0

-58,4-6,52-1 = -58,4-6,52-1-0

-312,14-√2 = -312,14-√2-0

Multiplicação

Essa operação matemática também possui seu elemento neutro ou propriedade moduladora:

3x7x1 = 3 × 7

(5 × 4) x3 = (5 × 4) x3x1

Qual é o número 1, pois não altera o resultado da multiplicação.

Isto também é verdade para números inteiros:

2 × 3 = -2x3x1

14000 × 2 = 14000x2x1

256x12x33 = 256x14x33x1

1450 x 4 x 65 = 1450 x 4 x 65 x 1

12 × 3 = 12x3x1

500 × 2 = 500x2x1

652x65x32 = 652x65x32x1

100x2x32 = 100x2x32x1

10000 × 2 = 10000x2x1

4x5x3200 = 4x5x3200x1

50000x3x14 = 50000x3x14x1

25 × 2 = 25x2x1

250 × 36 = 250x36x1

1500000 × 2 = 1500000x2x1

478 × 5 = 478x5x1

Para os racionais:

(2/3) x1 = 2/3

(1/4) x (2/3) = (1/4) x (2/3) x1

(3/8) x (5/8) = (3/8) x (5/8) x1

(12/89) x (1/2) = (12/89) x (1/2) x1

(3/8) x (7/8) (3/8) x (7/8) x x (6/7) = (6/7) x 1

(1/2) x (5/8) = (1/2) x (5/8) x 1

1 x (15/8) = 15/8

(4/96) x (1/5) x (1/7) = (4/96) x (1/5) x (1/7) x1

(1/8) x (1/79) = (1/8) x (1/79) x 1

(200/560) x (2/3) = (200/560) x 1

(9/8) x (5/6) = (9/8) x (5/6) x 1

Para os irracionais:

e x 1 = e

X2 x √6 = √2 x √6 x1

√500 x 1 = √500

X12 x √32 x √3 = V√12 x √32 x √3 x 1

√8 x 1/2 = √8 x 1/2 x1

√5 √320 x x x = √23 √9 √320 x √5 √9 x √23 x1

X2 x 5/8 = √2 x5 / 8 x1

X32 x √5 / 2 = √32 + √5 / 2 x1

e x √2 = e x √2 x 1

(π / 2) x (3/4) = (π / 2) x (34) x 1

π x √3 = π x √3 x 1

E finalmente para os verdadeiros:

2,718×1= 2,718

-325 x (-2) = -325 x (-2) x1

10000 x (25,21) = 10000 x (25,21) x 1

-2012 x (-45,52) = -2012 x (-45,52) x 1

-13,50 x (-π / 2) = 13,50 x (-π / 2) x 1

-π x √250 = -π x √250 x 1

-√250 x (1/3) x (190) = -√250 x (1/3) x (190) x 1

- (√3 / 2) x (√7) = - (√3 / 2) x (√7) x 1

-12,50 x (400,53) = 12,50 x (400,53) x 1

1 x (-5638,12) = -5638,12

210,69 x 15,10 = 210,69 x 15,10 x 1

Divisão

O elemento neutro da divisão é como na multiplicação, o número 1. Uma dada quantidade dividida por 1 dará o mesmo resultado:

34÷1=34

7÷1=7

200000 ÷ 1 = 200000

ou o que é o mesmo:

200000/1 = 200000

Isto é verdade para cada inteiro:

8/1 = 8

250/1 = 250

1000000/1 = 1000000

36/1 = 36

50000/1 = 50000

1/1 = 1

360/1 = 360

24/1 = 24

2500000/1 = 250000

365/1 = 365

E também para cada racional:

(3/4) ÷ 1 =3/4

(3/8) ÷ 1 = 3/8

(1/2) ÷ 1 = 1/2

(47/12) ÷ 1 = 47/12

(5/4) ÷ 1 = 5/4

 (700/12) ÷ 1 = 700/12

(1/4) ÷ 1 = 1/4

(7/8) ÷ 1 = 7/8

Para cada número irracional:

π/1 = π

(π/2) / 1 = π/2

(√3/2) / 1 = √3/2

√120/1 = √120

√8500 / 1 = √8500

√12 / 1 = √12

(π/4) / 1 = π/4

E, em geral, para todo número real:

3,14159/1=3,14159

-18/1 = -18

16,32 ÷ 1 = 16,32

-185000,23 ÷ 1 = -185000,23

-10000,40 ÷ 1 = -10000,40

156,30 ÷ 1 = 156,30

900000, 10 ÷ 1 = 900000,10

1,325 ÷ 1 = 1,325

A propriedade modulativa é essencial em operações algébricas, desde que o dispositivo de multiplicar ou dividir por elemento algébrico cujo valor é 1, não altera a equação.

No entanto, se você pode simplificar as operações com as variáveis, a fim de obter uma expressão mais simples e conseguir resolver as equações de maneira mais fácil.

Em geral, todas as propriedades matemáticas são necessárias para o estudo e desenvolvimento de hipóteses e teorias científicas.

Nosso mundo está cheio de fenômenos que são constantemente observados e estudados pelos cientistas.

Esses fenômenos são expressos com modelos matemáticos para facilitar sua análise e posterior compreensão.

Dessa forma, comportamentos futuros podem ser previstos, entre outros aspectos, o que traz grandes benefícios que melhoram o modo de vida das pessoas.

Referências

  1. Definição de números naturais. Retirado de: definicion.de.
  2. Divisão de inteiros. Recuperado de: vitutor.com.
  3. Exemplo de propriedade modulativa. Retirado de: ejemplode.com.
  4. Os números naturais Retirado de: gcfaprendelibre.org.
  5. Matemática 6. Recuperado de: colombiaaprende.edu.co.
  6. Propriedades matemáticas. Retirado de: wikis.engrade.com.
  7. Propriedades de multiplicação: associativas, comutativas e distributivas. Retirado de: portaleducativo.net.
  8. Propriedades da soma. Retirado de: gcfacprendelibre.org.